HGAMN - Heterogeneous Graph Attention Matching Network for Multilingual POI Retrieval at Baidu Maps

Source: KDD '21

Speaker: Po-Jen, Wen

Advisor: Jia-Ling, Koh

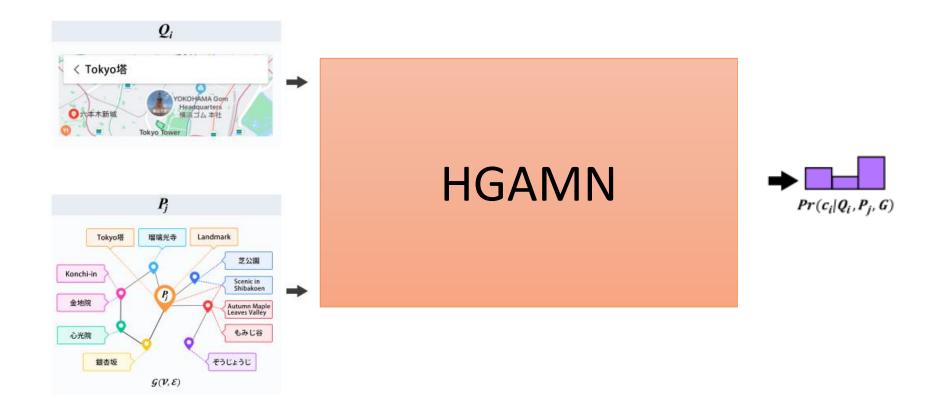
Date: 2021/10/19

- Introduction
- Method
- Experiment
- Conclusion

Introduction

The increasing interest in international travel has raised the demand of retrieving point of interests (POIs) in multiple languages.

Input & Output



Query Candidate POIs Historical queries

Correlation between p and q

Challenges

1. Visiting Sparsity

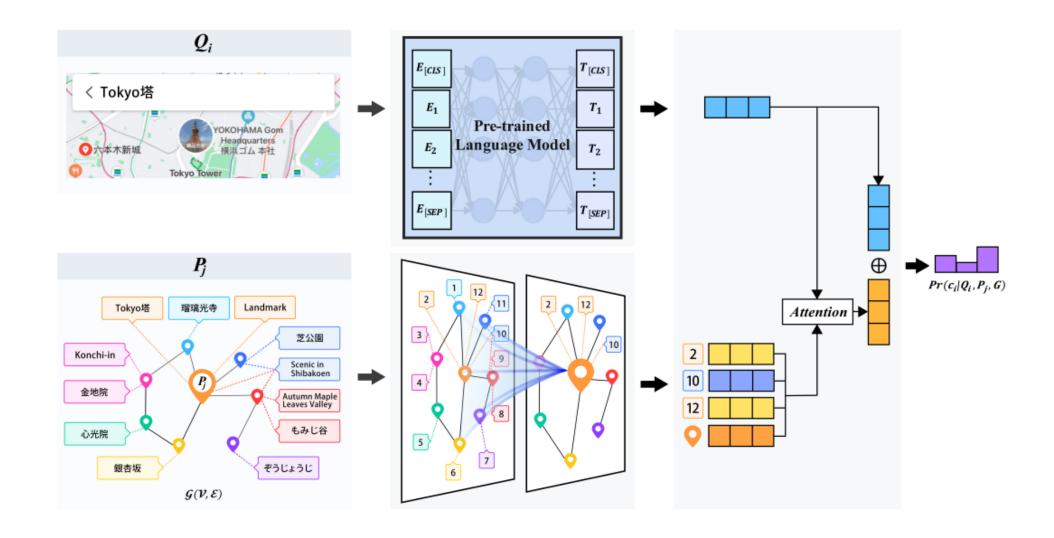
- Statistics show that only 6.4% of the POIs have been clicked by one or more users.
- The effectiveness of a POI retrieval model would significantly decline when handling the majority of POIs that have sparse click logs.

2. Multilingual Query-POI Matching

- Most of the users search the overseas POIs by their native languages, which are more likely to be inconsistent with the languages of the target POIs.
- Queries are sometimes mixed keyboard inputs of multi-languages, which further necessitates multilingual POI retrieval.

- Introduction
- Method
- Experiment
- Conclusion

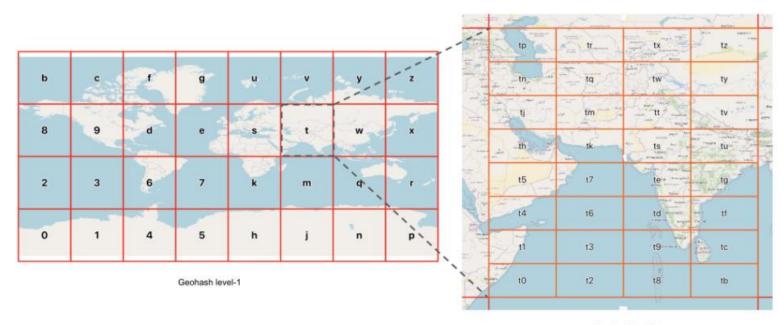
Overall framework of HGAMN



Multi-Source Information Learning

GPS Encoding

```
s_{GPS} = \text{Geohash}((x_v, y_v)) the length |s_{GPS}| \in [1, 12]
```

Multi-Source Information Learning

GPS Encoding

 s_{GPS} ="wx4g09np9p"

X = ['[PAD]', '[PAD]', 'w', 'x', '4', 'g', '0', '9', 'n', 'p', '9', 'p']

Transform

character embeddings $\mathbf{X} \in \mathbb{R}^{12 \times d_c}$, where $d_c = 64$

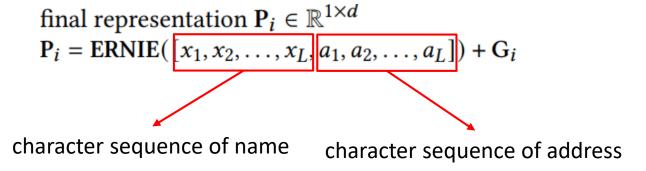
 $\widetilde{\mathbf{h}}_t = [\overrightarrow{\mathsf{GRU}}(\mathbf{X}_t); \overleftarrow{\mathsf{GRU}}(\mathbf{X}_t)]$. $\widetilde{\mathbf{h}}_{12}$ is used as the representation of the POI's GPS.

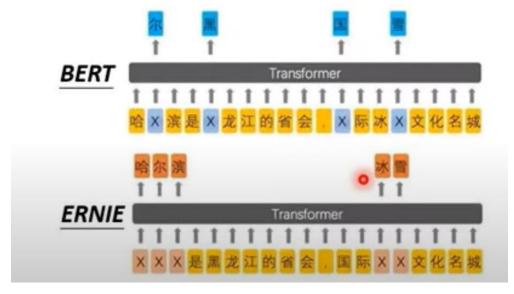
obtain an embedding matrix $\mathbf{G} \in \mathbb{R}^{|\mathcal{P}| \times d}$

Multi-Source Information Learning

Text Encoding

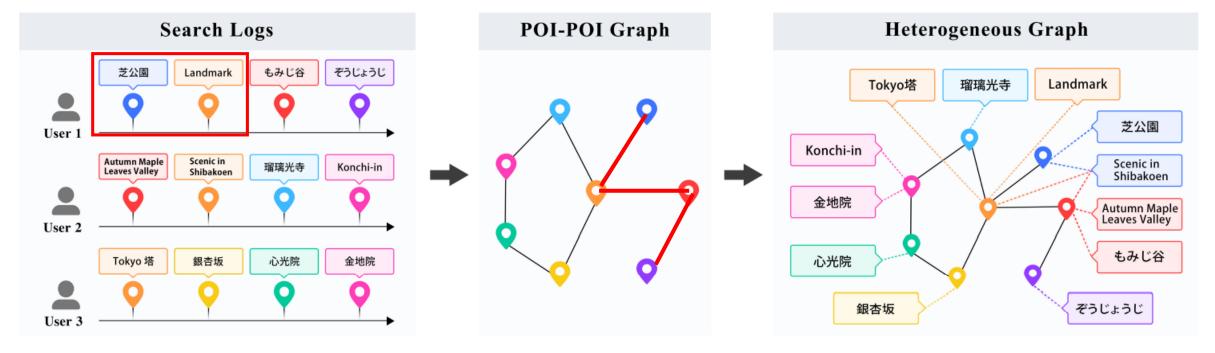
```
\mathbf{q} = \text{ERNIE}([c_1, c_2, \dots, c_L]), where [c_1, c_2, \dots, c_L] is the character sequence of the query. the final representation of a query is represented as: \widetilde{\mathbf{q}} = \mathbf{q} + \mathbf{G}_u. \mathbf{Q}_{P_i} = [\widetilde{\mathbf{q}}_1, \widetilde{\mathbf{q}}_2, \widetilde{\mathbf{q}}_3, \widetilde{\mathbf{q}}_4] the top-4 queries
```





Heterogeneous Graph Learning

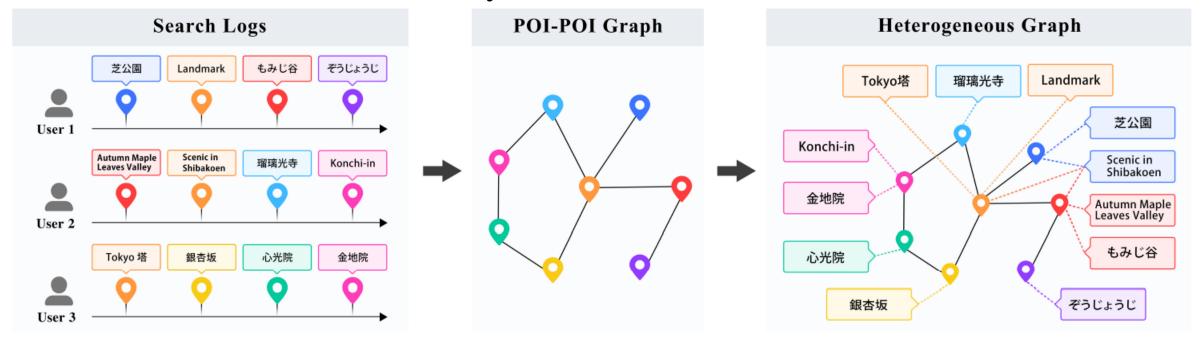
POI-POI



$$\begin{split} \mathbf{A}_{ij}^{pp} &= \text{PMI}(P_i, P_j) = log \frac{Pr(P_i, P_j)}{Pr(P_i) \cdot Pr(P_j)} \\ Pr(P_i, P_j) &= \frac{\#W(P_i, P_j)}{\#W} \,, \\ Pr(P_i) &= \frac{\#W(P_i)}{\#W} \,, \end{split}$$

Heterogeneous Graph Learning

Graph Construction : POI-Query



$$\mathbf{A}_{ij}^{pq} = \frac{c_{i,j}}{\sum_{k=1}^{|Q_{P_i}|} c_{i,k}}$$

 $c_{i,j}$ is the frequency of query-POI pair $(q_j, P_i), q_j \in Q_{P_i}$

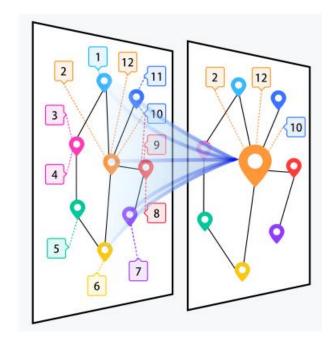
Heterogeneous Graph Learning

Heterogeneous Graph Learning

$$\mathbf{n}_{i} \in \mathbb{R}^{d_{n}}$$

$$\mathbf{e}_{j}^{(k)} = \sigma(\max(\{\mathbf{W}^{(k)}\mathbf{n}_{t}, n_{t} \in \mathcal{N}_{j}\}))$$

$$\mathbf{E}_{i} = (\mathbf{e}_{i,1}, \mathbf{e}_{i,2}, \dots, \mathbf{e}_{i,m}) \quad \mathbf{E}_{i} \in \mathbb{R}^{m \times d_{e}}$$



$$\begin{aligned} &\boldsymbol{\alpha}_i = \text{softmax}(\mathbf{n}_i \tanh(\mathbf{W}_r \mathbf{E}_i^T) \odot \mathbf{A}_i^{(r)}) \quad \boldsymbol{\alpha}_i \in \mathbb{R}^m \quad \mathbf{W}_r \in \mathbb{R}^{d_n \times d_e} \quad \mathbf{A}_i^{(r)} \in \{\mathbf{A}_{i,1:m}^{pp}, \mathbf{A}_{i,1:m}^{pq}\} \\ &\tilde{\mathbf{e}}_i = \boldsymbol{\alpha}_i^T \mathbf{E}_i, \ \tilde{\mathbf{e}}_i \in \mathbb{R}^{d_e} \\ &\tilde{\mathbf{n}}_i = \mathbf{n}_i + \mathbf{W}_1 \tilde{\mathbf{e}}_i + \mathbf{W}_2 \mathbf{n}_i' \quad \mathbf{W}_1 \in \mathbb{R}^{d_n \times d_e}, \mathbf{W}_2 \in \mathbb{R}^{d_n \times d} \quad \mathbf{n}_i' \in \{\mathbf{Q}_{P_i}, \mathbf{P}_i\} \end{aligned}$$

POIs:
$$\widetilde{\mathbf{P}} \in \mathbb{R}^{|\mathcal{P}| \times d_n}$$
 queries: $\widetilde{\mathbf{Q}} \in \mathbb{R}^{|\mathcal{Q}| \times d_n}$

POI Ranker

$$\mathbf{M} = [\widetilde{\mathbf{P}}_i, \widetilde{\mathbf{Q}}_{P_i}]$$

$$s_k = \mathbf{W}_4 \tanh([\widetilde{\mathbf{q}}; \mathbf{M}_k] \mathbf{W}_3 + b) \quad \mathbf{W}_3 \in \mathbb{R}^{2d_n \times d_n} \text{ and } \mathbf{W}_4 \in \mathbb{R}^{1 \times d_n}$$

$$\phi_k = \frac{exp(s_k)}{\sum_{j=1}^{|\mathbf{M}|} exp(s_j)},$$

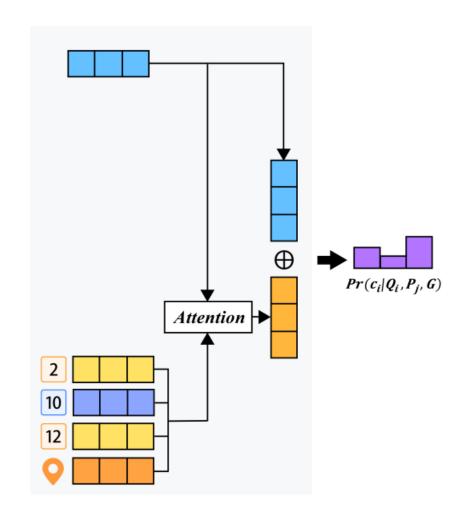
$$|\mathbf{M}|$$

$$\mathbf{m} = \sum_{k=1}^{|\mathbf{M}|} \phi_k \mathbf{M}_k \qquad \mathbf{m} \in \mathbb{R}^{d_n}$$

$$Pr(c_i|q, P_i, \mathcal{G}) = \text{softmax}([\widetilde{\mathbf{q}}; \mathbf{m}]\mathbf{W}_v) \qquad \mathbf{W}_v \in \mathbb{R}^{2d_n \times 2}$$

Loss function

$$\mathcal{L} = -\sum_{i=1}^{|\mathcal{P}|} y_i \log Pr(c_i|q, P_i, \mathcal{G})$$



- Introduction
- Method
- Experiment
- Conclusion

Datasets and baselines

Datasets: Baidu Maps

Subset	#(Queries)	#(Candidate POIs)/#(Queries)
Train	11,935,730	2.7
Valid	73,255	2.8
Test	181,589	11.6
Total	12,190,574	2.8

Experiment results

Model	Evaluation Metrics (Offline)						
Model	MRR	nDCG@1	nDCG@3	nDCG@10	SR@1	SR@3	SR@10
DSSM [16]	0.6681	0.5235	0.6634	0.7258	0.5235	0.7705	0.9324
ARC-I [8]	0.6604	0.5127	0.6561	0.7206	0.5127	0.7665	0.9337
Conv-DSSM [26]	0.6485	0.4985	0.6420	0.7097	0.4985	0.7515	0.9281
DPSM [35]	0.6181	0.4900	0.6084	0.6655	0.4900	0.7010	0.8491
PALM [34]	0.6921	0.5488	0.6902	0.7500	0.5488	0.7993	0.9521
HGAMN	0.7663	0.6539	0.7653	0.8097	0.6539	0.8528	0.9636
w/o POI-POI Graph	0.7655	0.6527	0.7648	0.8091	0.6527	0.8526	0.9628
w/o POI-Query Graph	0.7573	0.6408	0.7557	0.8030	0.6408	0.8455	0.9640
w/o Heterogeneous Graph	0.6924	0.5451	0.6921	0.7507	0.5451	0.8052	0.9540
LTR	0.8253	0.7323	0.8294	0.8582	0.7323	0.9030	0.9721
LTR + HGAMN	0.8307	0.7393	0.8347	0.8627	0.7393	0.9072	0.9743

Experiment results

Model	Evaluation Metrics (Online)				
Miodei	SR@1	SR@3	SR@10		
DSSM	0.4847	0.7130	0.8358		
ARC-I	0.4668	0.7024	0.8349		
PALM	0.4900	0.7010	0.8491		
LTR	0.6647	0.8189	0.8802		
LTR + HGAMN	0.7173	0.8807	0.9437		

- Introduction
- Method
- Experiment
- Conclusion

Conclusion

- Propose a heterogeneous graph attention matching network (HGAMN) to address the visiting sparsity and multilingual query-POI matching problems
- HGAMN is composed of three modules:
 - 1. A multi-source information learning module, which learns the text and location representations of the multilingual query, POI name, and POI address
 - 2. A heterogeneous graph learning module, which constructs the connections of different POIs and historical queries, and learns the node representations from the heterogeneous graph
 - 3. POI ranker module, which calculates the relevance between a query and candidate POIs.